
 

Module 2: Machine Instructions and Assembly 
Language Programming 
Module Objective: This module dives into the fundamental language of computers: 
machine instructions. It explores how programs are represented, the types of operations a 
processor can perform, and the structure of instruction sets. Learners will also gain an 
in-depth understanding of assembly language programming, including assembler directives 
and macros, and grasp essential program execution constructs such as stacks, queues, and 
the mechanics of subroutine calls, crucial for building efficient and modular embedded 
software. 

 
2.1 Machine Instructions and Programs 
This foundational section establishes the core concept of a machine instruction, detailing its 
structure, how programs are stored in memory, and the cyclical process a Central 
Processing Unit (CPU) undertakes to execute these instructions. 

At the very heart of any digital computer lies the Central Processing Unit (CPU), the 
component responsible for carrying out the instructions that make up a computer program. 
Unlike humans who understand high-level languages, the CPU operates on an extremely 
low-level, binary language known as machine code. A machine instruction is a single, 
atomic command or directive, expressed in binary, that precisely tells the CPU to perform 
one specific operation. These operations are typically very simple, such as adding two 
numbers, moving data from one location to another, or making a decision based on a 
condition. All complex software, from operating systems to mobile applications, is ultimately 
translated down to these fundamental machine instructions before execution. 

Storing Programs in Memory: Instruction Format and Opcode 

For the CPU to execute a program, both the program's machine instructions and the data 
they operate upon must reside in the computer's main memory. Memory can be 
conceptualized as a vast array of individually addressable storage locations, each holding a 
fixed number of bits (often a byte or a word). Instructions are typically stored sequentially in 
contiguous memory locations, forming a continuous block of executable code. 

Each machine instruction possesses a predefined instruction format, which is its unique 
binary structure. This format dictates how the various bits within a binary instruction are 
organized and interpreted by the CPU's control unit. The most critical component of any 
instruction format is the opcode (operation code). The opcode is a distinct binary pattern 
that unambiguously identifies the type of operation the instruction is meant to perform. For 
example, a specific binary sequence might signify an "ADD" operation, another a 
"SUBTRACT," and yet another a "LOAD" from memory. 

The bits remaining in the instruction format, after the opcode, are dedicated to specifying the 
operands. Operands are the data or the locations of the data that the instruction's operation 
will act upon. Operands can be: 



● CPU Registers: Internal, high-speed storage locations within the CPU itself. 
● Memory Addresses: Pointers to specific locations in main memory. 
● Immediate Values: Constant numerical values that are directly embedded within the 

instruction itself. 

Consider a hypothetical simple 32-bit instruction format: 

● Bits 31-26: Opcode (6 bits, allowing for 26=64 distinct operations). 
● Bits 25-21: Destination Register (5 bits, specifying one of 25=32 general-purpose 

registers). 
● Bits 20-16: Source Register 1 (5 bits, specifying another general-purpose register). 
● Bits 15-11: Source Register 2 (5 bits, specifying a third general-purpose register). 
● Bits 10-0: Unused or used for additional flags/immediate values depending on 

opcode. 

An instruction using this format with a specific "ADD" opcode might instruct the CPU: "add 
the content of Source Register 1 to the content of Source Register 2, and place the sum into 
the Destination Register." Each such instruction, in its complete binary form, occupies a fixed 
number of bits (e.g., 32 bits, or 4 bytes) in memory. 

Instruction Cycle Revisited: Fetch, Decode, Execute, Store 

The CPU relentlessly carries out a cyclical process to execute programs, known as the 
instruction cycle (often referred to as the fetch-decode-execute cycle). This cycle repeats 
continuously for every single instruction within a program, forming the fundamental engine of 
computation. 

1. Fetch: The first stage involves retrieving the next instruction from the main memory. 
To know which instruction to fetch, the CPU relies on a special-purpose internal 
register called the Program Counter (PC). The PC invariably holds the memory 
address of the instruction that is to be fetched next. Once the instruction is fetched 
from the memory location pointed to by the PC, the PC is almost always 
automatically incremented to point to the subsequent instruction in memory. This 
ensures the CPU processes instructions sequentially by default. 

2. Decode: The instruction, having been fetched from memory, is a raw binary code. It 
is then loaded into another crucial CPU register, the Instruction Register (IR). The 
CPU's control unit (a component within the CPU) then takes over. It decodes the 
contents of the IR, interpreting the opcode to discern precisely what operation is 
required. It also identifies the operands specified within the instruction, determining 
where the data needed for the operation is located (e.g., in which registers, or at 
which memory address). 

3. Execute: In this stage, the CPU performs the actual operation specified by the 
decoded opcode, using the identified operands. This can involve a variety of actions: 

○ Using the Arithmetic Logic Unit (ALU) for mathematical calculations 
(addition, subtraction, multiplication, division) or logical operations (AND, OR, 
NOT). 

○ Reading data from or writing data to the CPU's internal general-purpose 
registers. 

○ Initiating memory read operations to fetch data from main memory. 



○ Initiating memory write operations to store results back into main memory. 
○ Manipulating internal flags (e.g., setting a 'Zero' flag if a result is zero). 

4. Store (or Write-back): If the execution of the instruction yields a result (e.g., the sum 
from an addition, a value loaded from memory, the outcome of a comparison), this 
result is then written to its designated destination. The destination can be a specific 
CPU register or a particular memory location. In some architectures, this stage is 
also called the "write-back" stage, referring to writing the result back to a register. 

Upon the completion of the Store stage, the CPU seamlessly transitions back to the Fetch 
stage. The Program Counter, having been updated (either by incrementing for sequential 
flow or by a branch instruction for non-sequential flow), then points to the next instruction to 
be fetched, perpetuating the cycle of program execution. 

Role of Program Counter (PC) and Instruction Register (IR) 

These two special-purpose registers are indispensable for the CPU's operation: 

● Program Counter (PC): The PC holds the memory address of the next instruction 
that the CPU is scheduled to fetch from memory. It acts as the CPU's internal 
"roadmap" through the program's code. After an instruction is fetched, the PC is 
typically incremented by the size of the instruction (e.g., by 4 bytes for a 32-bit 
instruction) to point to the next instruction in the normal sequential flow. However, if 
the currently executing instruction is a "control flow" instruction (such as a branch or 
a jump), the PC will be explicitly loaded with a new, non-sequential address, causing 
the program execution to jump to a different part of the code. This mechanism is 
crucial for implementing loops, conditional statements, and function calls. 

● Instruction Register (IR): The IR serves as a temporary holding area for the 
machine instruction that has just been fetched from memory. Once an instruction is in 
the IR, the CPU's control unit can then analyze its opcode and operand fields to 
generate the precise control signals required by other CPU components (like the 
ALU, register file, and memory interface) to perform the specified operation. The IR 
essentially holds the "current command" the CPU is working on. 

 
2.2 Types of Instructions 
Machine instruction sets are broadly categorized based on the fundamental operations they 
allow the CPU to perform. Understanding these categories provides a structured view of how 
a computer processes information and controls its execution flow. Even the most intricate 
software applications are ultimately decomposed into sequences of these simple, atomic 
instructions. 

Data Transfer Instructions 

These instructions are the workhorses for moving data around the computer system. Their 
primary function is to transfer data between different storage locations without modifying the 
actual data value itself. These locations typically include CPU registers and main memory. 



● LOAD: This instruction is used to transfer a piece of data from a specified memory 
location into one of the CPU's general-purpose registers. It allows the CPU to bring 
data from the slower main memory into its faster internal registers for processing. 

○ Example: LOAD R1, 0x1000 (This instruction would fetch the data stored at 
memory address 0x1000 and place a copy of it into Register R1). 

● STORE: This instruction performs the inverse operation of LOAD. It transfers a piece 
of data from a specified CPU register into a designated memory location. This is how 
the CPU writes results back to memory for later use or for interaction with other parts 
of the system. 

○ Example: STORE R1, 0x2000 (This instruction would take the current value 
held in Register R1 and write it to memory address 0x2000). 

● MOVE: This is a more general-purpose data transfer instruction that can facilitate 
transfers between various internal CPU locations or between registers and memory. 
The specific operands determine the source and destination. 

○ Register to Register: Transfers the content of one CPU register to another 
CPU register. This is an extremely fast operation as it occurs entirely within 
the CPU. 

■ Example: MOVE R1, R2 (Copy the content of Register R2 into 
Register R1. The content of R2 remains unchanged). 

○ Memory to Register: This operation is functionally equivalent to a LOAD 
instruction. It copies data from a memory location into a register. 

■ Example: MOVE R1, (0xABCD) (Move the data from memory address 
0xABCD into Register R1). The parentheses () typically denote that 
the value inside is a memory address whose content is to be 
accessed. 

○ Register to Memory: This operation is functionally equivalent to a STORE 
instruction. It copies data from a register into a memory location. 

■ Example: MOVE (0xEFGH), R3 (Move the data from Register R3 into 
memory address 0xEFGH). 

○ Immediate to Register/Memory: Transfers a constant numerical value (an 
"immediate" value) directly specified within the instruction itself, into a register 
or a memory location. This is often used for initializing variables or registers 
with fixed values. 

■ Example: MOVE R1, #5 (Move the constant value 5 into Register R1). 
The # symbol commonly denotes an immediate value. 

Arithmetic Instructions 

These instructions are dedicated to performing fundamental mathematical computations. 
They primarily operate on integer data types. Operations involving fractional numbers 
(floating-point numbers) typically require a specialized Floating-Point Unit (FPU) and a 
distinct set of floating-point arithmetic instructions. 

● ADD: Computes the sum of two operands and places the result in a specified 
destination. 



○ Example: ADD R1, R2, R3 (Add the content of Register R2 to the content of 
Register R3, and store the sum in Register R1. Here, R2 and R3 are source 
operands, R1 is the destination). 

○ Example (2-address form): ADD R1, R2 (Add the content of Register R2 to 
the content of Register R1, and store the sum back in Register R1. Here, R1 
is both a source and destination). 

● SUBTRACT: Computes the difference between two operands. 
○ Example: SUB R1, R2, R3 (Subtract the content of Register R3 from the 

content of Register R2, store the result in Register R1). 
● MULTIPLY: Computes the product of two operands. Integer multiplication can result 

in a product that is larger than the original operands, potentially requiring two 
destination registers to hold the full result. 

○ Example: MUL R1, R2, R3 (Multiply the content of Register R2 by the content 
of Register R3, store the product in Register R1). 

● DIVIDE: Computes the quotient and sometimes the remainder of a division 
operation. Integer division can be tricky with negative numbers and division by zero. 

○ Example: DIV R1, R2, R3 (Divide the content of Register R2 by the content of 
Register R3, store the quotient in Register R1). 

Logical Instructions 

These instructions perform bitwise logical operations, treating their operands as sequences 
of individual binary bits. They are indispensable for manipulating specific bits within a word, 
setting or clearing flags, or performing bitmasks. 

● AND: Performs a bitwise logical AND operation. For each corresponding bit position, 
the result bit is 1 only if both input bits are 1; otherwise, it's 0. Used for masking bits 
(clearing specific bits). 

○ Example: AND R1, R2, R3 (R1 becomes the bitwise AND of R2 and R3). 
● OR: Performs a bitwise logical OR operation. For each corresponding bit position, 

the result bit is 1 if at least one of the input bits is 1; otherwise, it's 0. Used for setting 
specific bits. 

○ Example: OR R1, R2, R3 (R1 becomes the bitwise OR of R2 and R3). 
● NOT (or Complement): Performs a bitwise logical NOT operation. It inverts every bit 

in the operand (0 becomes 1, 1 becomes 0). This is a unary operation (takes one 
operand). 

○ Example: NOT R1, R2 (R1 becomes the bitwise NOT of R2). 
● XOR (Exclusive OR): Performs a bitwise logical XOR operation. For each 

corresponding bit position, the result bit is 1 if the input bits are different (one is 0 and 
the other is 1); otherwise, it's 0. Used for toggling bits or comparing two values for 
equality (result is 0 if equal). 

○ Example: XOR R1, R2, R3 (R1 becomes the bitwise XOR of R2 and R3). 
● Shift Instructions: These instructions move the bits within an operand to the left or 

right by a specified number of positions. 
○ Logical Shift Left (LSL): Shifts bits to the left. The leftmost bit is shifted out 

and typically discarded. New positions on the right are filled with zeros. This 



operation effectively multiplies an unsigned integer by powers of 2 (2N for N 
shifts). 

○ Logical Shift Right (LSR): Shifts bits to the right. The rightmost bit is shifted 
out. New positions on the left are filled with zeros. This operation effectively 
divides an unsigned integer by powers of 2. 

○ Arithmetic Shift Right (ASR): Shifts bits to the right. The rightmost bit is 
shifted out. New positions on the left are filled with a copy of the original sign 
bit (the most significant bit). This preserves the sign of a signed integer while 
performing division by powers of 2. 

● Rotate Instructions: These instructions also move bits, but bits shifted off one end 
"wrap around" and reappear at the other end, preserving all bits in the operand. 

○ Rotate Left (ROL): Bits shift left. The leftmost bit moves to the rightmost 
position. 

○ Rotate Right (ROR): Bits shift right. The rightmost bit moves to the leftmost 
position. 

○ Rotate with Carry (RLC/RRC): Similar to ROL/ROR, but the CPU's "carry 
flag" (a status bit) is involved in the rotation, often acting as an extended bit 
for the rotation. 

Control Flow Instructions 

These instructions are paramount for enabling dynamic program behavior. They alter the 
default sequential execution flow of a program, allowing for decision-making, repetition 
(loops), and modular code organization (subroutines). 

● Branching: These instructions cause the Program Counter (PC) to be loaded with a 
new address, thereby redirecting program execution to a different part of the code. 

○ Conditional Branching: The branch operation occurs only if a specific 
condition is met. These conditions are typically determined by the state of 
special CPU status flags (also known as condition codes) that are 
automatically set or cleared by previous arithmetic, logical, or comparison 
operations. Common flags include: 

1. Zero Flag (Z): Set if the result of an operation is zero. 
2. Negative Flag (N): Set if the result of an operation is negative (most 

significant bit is 1). 
3. Carry Flag (C): Set if an arithmetic operation produced a carry-out 

(for addition) or a borrow (for subtraction). 
4. Overflow Flag (V): Set if a signed arithmetic operation resulted in an 

overflow (result exceeds the representable range). 
5. Example: BEQ Label (Branch if Equal to Zero to the instruction at 

Label). This instruction checks the Zero flag; if it's set, the PC is 
loaded with Label's address; otherwise, execution continues 
sequentially. 

6. Other examples: BNE (Branch if Not Equal), BGT (Branch if Greater 
Than), BLT (Branch if Less Than), BCC (Branch if Carry Clear), etc. 



○ Unconditional Branching (Jump): The branch operation always occurs, 
irrespective of any conditions. The PC is simply loaded with the target 
address. 

1. Example: JMP TargetAddress (Jump unconditionally to the instruction 
at TargetAddress). 

2. Example: BRA EndProgram (Branch unconditionally to the instruction 
at EndProgram). 

● Calling Subroutines (Procedures/Functions): These are specialized control flow 
instructions designed to invoke and then return from reusable blocks of code 
(subroutines). This mechanism is fundamental to modular programming. 

○ CALL (or JSR - Jump to SubRoutine): When a CALL instruction is 
executed: 

1. The CPU automatically saves the current value of the Program 
Counter (PC) onto the stack. This saved value is the return address, 
indicating the instruction in the calling routine that should be executed 
immediately after the subroutine completes. 

2. The PC is then loaded with the starting memory address of the 
subroutine, transferring control to its first instruction. 

○ RETURN (or RET): When a RETURN instruction is executed within a 
subroutine: 

1. The CPU retrieves (POP) the previously saved return address from 
the top of the stack. 

2. This retrieved address is then loaded back into the Program Counter 
(PC). 

3. Program execution resumes at the instruction immediately following 
the original CALL in the calling routine. 

I/O Instructions 

These instructions manage the interaction between the CPU and external Input/Output (I/O) 
devices, such as keyboards, displays, sensors, and network interfaces. The approach to I/O 
instructions varies significantly between different CPU architectures. 

● Dedicated I/O Instructions (Port-Mapped I/O): 
○ Some architectures (like Intel x86) implement a separate, dedicated address 

space specifically for I/O devices, distinct from the memory address space. 
○ In these architectures, special I/O instructions are used to read data from or 

write data to I/O ports. 
○ Example: IN AL, 0x60 (Read a byte from I/O port 0x60 into the AL register). 

OUT 0x61, AL (Write the content of AL register to I/O port 0x61). 
○ These instructions typically access I/O devices by a "port number" rather than 

a memory address. 
● Memory-Mapped I/O (MMIO): 

○ Many modern embedded system architectures (like ARM, MIPS) exclusively 
use memory-mapped I/O. 



○ In this approach, I/O devices are assigned unique addresses within the same 
memory address space as the main memory. 

○ The CPU interacts with I/O devices by simply using standard LOAD and 
STORE (or MOVE) instructions to read from or write to these special memory 
addresses that correspond to device registers. 

○ Example: LOAD R1, 0x40000000 (Load data from the memory-mapped data 
register of a UART at address 0x40000000 into R1). STORE R2, 0x40000004 
(Write data from R2 to the memory-mapped control register of the UART at 
0x40000004). 

○ This approach simplifies the CPU's instruction set as no special I/O 
instructions are needed. However, it requires careful system memory 
management to avoid conflicts between I/O device addresses and actual 
RAM/ROM. 

 
2.3 Instruction Sets: Instruction Formats and Addressing Modes 
This section delves deeper into the structural properties of instruction sets, focusing on how 
instructions are laid out in binary and the various ways they can specify the location of their 
operands. 

Instruction Set Architecture (ISA): The Programmer's View of the Processor 

The Instruction Set Architecture (ISA) is the abstract definition of a computer's CPU that is 
visible to a programmer or a compiler. It represents the contract between the hardware and 
the software. The ISA specifies what the CPU can do, without necessarily detailing how it 
does it. It is the crucial interface that allows software written for a particular ISA (e.g., 
ARMv7, x86-64, RISC-V) to run correctly on any CPU hardware implementation that 
adheres to that ISA, regardless of the internal micro-architectural differences. 

Key elements defined by an ISA include: 

● Instruction Set: The complete collection of machine instructions that the CPU can 
execute, including their mnemonics and binary opcodes. 

● Instruction Formats: The precise bit patterns of all instructions, indicating the 
position and meaning of opcode, operand fields, etc. 

● Addressing Modes: All the ways in which the CPU can calculate the effective 
memory address of an operand. 

● Registers: The set of programmer-visible CPU registers, including general-purpose 
registers, special-purpose registers (like Program Counter, Stack Pointer), and 
status/flag registers. 

● Data Types: The data types the CPU can directly operate on (e.g., 8-bit bytes, 16-bit 
words, 32-bit integers, floating-point numbers). 

● Memory Organization: How memory is accessed (e.g., byte-addressable, 
word-addressable) and the endianness (byte order). 

● Privilege Levels and Exception Handling: How the CPU manages different 
operating modes (e.g., user mode, kernel mode) and responds to interrupts and 
exceptions. 



Instruction Formats 

The instruction format is the layout of bits within a machine instruction. It defines how the 
instruction is encoded in binary for the CPU to understand. 

● Fixed vs. Variable Length Instructions: 
○ Fixed-Length Instructions: All instructions in the processor's instruction set 

occupy the same number of bits (e.g., all instructions are 16-bit, 32-bit, or 
64-bit). 

■ Advantages: Simpler hardware design for fetching and decoding 
instructions. This regularity allows for more efficient and faster 
pipelining, where multiple instructions are processed concurrently in 
different stages of the CPU pipeline. It also simplifies memory 
alignment and caching. 

■ Disadvantages: Can be less code-dense. If a simple operation 
requires only a few bits for its opcode and operands, the remaining 
bits in a fixed-length instruction are unused, leading to wasted 
memory space. Conversely, if a complex operation requires many 
operands or a large immediate value, it might be difficult to fit all 
information within the fixed length. 

■ Example Architectures: ARM (standard 32-bit instructions), MIPS, 
RISC-V (standard 32-bit instructions, though compressed 16-bit forms 
exist for code density). 

○ Variable-Length Instructions: Instructions can have different sizes, meaning 
some instructions might be 8 bits, others 16 bits, 32 bits, or even longer, 
depending on the complexity of the operation and the number/type of 
operands. 

■ Advantages: More code-dense. This allows for smaller program 
binaries, which is particularly beneficial in memory-constrained 
embedded systems. Common, simple operations can use very short 
instructions, while less frequent, complex operations can use longer 
instructions to include more information. 

■ Disadvantages: More complex hardware design for instruction 
fetching and decoding. The CPU must first decode part of an 
instruction to determine its total length before fetching the next 
instruction, which can complicate pipelining and reduce execution 
speed. 

■ Example Architectures: Intel x86 (instructions can range from 1 to 15 
bytes), VAX. 

● Number of Addresses (0, 1, 2, 3-address instructions) and their Implications: 
This classification refers to the number of explicit operand addresses that are 
specified directly within the instruction. The addresses can refer to registers or 
memory locations. 

○ 3-Address Instructions: 
■ Concept: The instruction explicitly specifies three operands: two 

source operands and a distinct destination operand. 
■ Example: ADD R1, R2, R3 (Meaning: R1 = R2 + R3). Here, R2 and 

R3 are source addresses, and R1 is the destination address. 



■ Implications: Allows for very direct translation of high-level language 
expressions (e.g., A = B + C). Intermediate results rarely need to be 
stored back to memory or temporarily moved between registers. This 
can lead to fewer instructions for a given computation. However, it 
requires more bits within the instruction to encode all three addresses, 
potentially leading to longer instruction formats. 

○ 2-Address Instructions: 
■ Concept: The instruction explicitly specifies two operands, where one 

of the operands serves as both a source and the destination. The 
operation overwrites one of the source operands with the result. 

■ Example: ADD R1, R2 (Meaning: R1 = R1 + R2). Here, R1 is both a 
source and the destination, and R2 is a source. 

■ Implications: More compact instruction format compared to 
3-address instructions, as fewer address bits are needed. This is a 
very common approach in modern processors. However, if the original 
value of the source/destination operand needs to be preserved, an 
additional MOVE instruction might be required before the operation. 

○ 1-Address Instructions (Accumulator-based): 
■ Concept: The instruction explicitly specifies only one operand. The 

other operand, and typically the implicit destination for the result, is a 
special, dedicated CPU register called the accumulator (ACC). 

■ Example: ADD R2 (Meaning: ACC = ACC + R2). LOAD 1000 
(Meaning: ACC = Memory[1000]). 

■ Implications: Very compact instruction format due to requiring only 
one address field. However, programs require more instructions to 
perform complex calculations, as every operation implicitly involves 
the accumulator, necessitating frequent LOAD and STORE operations 
to manage intermediate results. Less common in modern 
general-purpose CPUs, but can be found in simpler microcontrollers 
or older architectures. 

○ 0-Address Instructions (Stack-based): 
■ Concept: Instructions have no explicit operand addresses. All 

operations implicitly act on the values located at the top of a 
hardware-managed stack. Operands are POPped from the stack, the 
operation is performed, and the result is PUSHed back onto the stack. 

■ Example: ADD (Pops the top two elements from the stack, adds them, 
and PUSHes the sum back onto the stack). 

■ Implications: Extremely compact instruction format. Requires a highly 
efficient stack implementation in hardware. The sequence of 
operations can sometimes be less intuitive for human programmers 
(reverse Polish notation). Used in some specialized processors, 
calculators, and virtual machine architectures (e.g., Java Virtual 
Machine, some Forth systems). 

● Fields within an instruction: 
Regardless of its length or the number of addresses it specifies, a machine 
instruction is fundamentally a binary word structured into distinct fields: 

○ Opcode Field: This is the most crucial part of the instruction. It contains a 
unique binary code that tells the CPU exactly what operation to perform (e.g., 



001010 for ADD, 110100 for LOAD). The length of the opcode field 
determines the maximum number of distinct instructions in the ISA. 

○ Operand Fields: These fields provide information about the data that the 
operation will use or modify. They can encode: 

■ Register Address: A small binary number that uniquely identifies one 
of the CPU's general-purpose registers (e.g., 000 for R0, 001 for R1). 
The number of bits in this field depends on the total number of 
registers. 

■ Memory Address: For instructions that directly access memory, this 
field contains the full or partial memory address of the operand. The 
size of this field determines the maximum directly addressable 
memory space. 

■ Immediate Value: A constant numerical value (literal) that is 
embedded directly within the instruction itself. This value is used as an 
operand without needing to be fetched from a register or memory. The 
size of this field limits the range of immediate values that can be used. 

■ Addressing Mode Specifics: Additional bits might be present to 
specify the particular addressing mode to be used, or to provide 
offsets, or to select between different sizes of operands (byte, word, 
double word). 

Addressing Modes: How the Operand's Effective Address is Calculated 

An addressing mode defines the rule or algorithm by which the CPU determines the actual 
physical memory location (the effective address) of an operand. Different addressing 
modes provide flexibility and efficiency in accessing various types of data, implementing data 
structures, and supporting different programming constructs. 

● Immediate Addressing: 
○ Calculation: The operand's value is the address itself. No calculation is 

needed to find the operand's location; the operand's value is directly available 
within the instruction. 

○ Example: ADD R1, #5 (Add the integer 5 to the content of R1). Here, #5 is the 
immediate operand. 

○ Use Cases: Loading constant values into registers, initializing variables, 
performing operations with small fixed numerical values. It's the fastest way to 
get data into a register because no memory access is required. 

● Register Addressing: 
○ Calculation: The operand's value is located directly in a specified CPU 

general-purpose register. The instruction contains the identifier (name) of the 
register. 

○ Example: ADD R1, R2 (Add the content of R2 to R1). R1 and R2 are both 
operands accessed via register addressing. 

○ Use Cases: Extremely fast data access as registers are the fastest storage 
available to the CPU. Used for holding intermediate results of calculations, 
loop counters, and frequently accessed variables. 



● Absolute (Direct) Addressing: 
○ Calculation: The instruction explicitly contains the complete and 

unambiguous physical memory address where the operand is stored. 
○ Example: LOAD R1, 0x1000 (Load the value from memory address 0x1000 

into R1). Here, 0x1000 is the absolute address. 
○ Use Cases: Accessing global variables whose addresses are fixed at compile 

time, reading from or writing to specific, known memory-mapped I/O device 
registers. 

○ Limitations: Requires sufficient bits in the instruction's address field to cover 
the entire memory space, which can be problematic for large memory 
systems. Programs using absolute addresses are generally not "relocatable" 
– they must be loaded into specific memory locations to work correctly. 

● Indirect Addressing: 
○ Concept: The instruction does not hold the operand's value or its direct 

address. Instead, it holds the address of a location (either a CPU register or a 
memory location) that contains the effective address of the operand. This is 
analogous to a pointer in high-level languages. 

○ Register Indirect Addressing: 
■ Calculation: The effective address of the operand is the value 

currently held in a specified CPU register. 
■ Example: LOAD R1, (R2) (Load the value from the memory location 

whose address is stored in R2, into R1). The parentheses () typically 
denote register indirect addressing. 

■ Use Cases: Implementing pointers, traversing data structures (like 
linked lists), passing parameters by reference, and flexible access to 
array elements where the register holds the base address. 

○ Memory Indirect Addressing: 
■ Calculation: The effective address of the operand is stored in a 

specified memory location. This requires two memory accesses: one 
to fetch the address from memory, and a second to fetch the actual 
operand from that address. 

■ Example: LOAD R1, @2000 (Load the value from the memory 
location whose address is stored at memory location 2000, into R1). 
The @ symbol commonly denotes memory indirect. 

■ Use Cases: Less common due to performance penalty (two memory 
accesses), but can be used for very flexible pointer-like operations 
where the pointer itself is stored in memory. 

● Indexed Addressing: 
○ Calculation: The effective address of the operand is computed by adding a 

constant offset (or displacement) to the content of a specified index 
register (or base register). 

○ Formula: Effective Address = [Content of Index Register] + Offset 
○ Example: LOAD R1, 100(R2) (Load the value from the memory location 

whose address is calculated as (Content of R2) + 100, into R1). 
○ Use Cases: Extremely efficient and widely used for accessing elements 

within arrays. The index register typically holds the starting (base) address of 
the array, and the offset changes for each element (e.g., 0 for the first 



element, size_of_element for the second, etc.). Also useful for accessing 
fields within records or structures. 

● Relative Addressing (PC-Relative Addressing): 
○ Calculation: The effective address of the operand (typically the target of a 

branch or jump instruction) is computed by adding a constant offset (or 
displacement) to the current value of the Program Counter (PC). 

○ Formula: Effective Address = [Content of PC] + Offset 
○ Example: BRANCH 50 (Jump to the instruction located 50 bytes after the 

current instruction). If the current PC is 0x100, the target address becomes 
0x100 + 50 = 0x150. 

○ Use Cases: Primarily used for branch and jump instructions within a program. 
It is crucial for creating position-independent code (PIC). PIC means the 
program can be loaded and executed correctly at any arbitrary memory 
address without needing to be modified, because all its internal jumps are 
relative to the PC, not to absolute memory locations. This is vital for shared 
libraries, dynamic loading, and programs stored in ROM. 

● Autoincrement/Autodecrement Addressing: 
○ Concept: These are specialized variants of register indirect addressing that 

combine operand access with automatic modification (increment or 
decrement) of the address-holding register. This is highly efficient for 
sequential data access. 

○ Autoincrement: 
■ Calculation: The operand is accessed at the address currently stored 

in the specified register. After the access, the content of the register is 
automatically incremented by the size of the operand (e.g., by 1 for 
byte access, by 4 for word access). 

■ Example: LOAD R1, (R2)+ (Load the value from the address in R2 
into R1, then increment R2). 

○ Autodecrement: 
■ Calculation: The content of the specified register is first automatically 

decremented by the size of the operand. Then, the operand is 
accessed at this new, decremented address. 

■ Example: STORE -(R2), R1 (Decrement R2, then store the content of 
R1 to the memory address now in R2). 

○ Use Cases: Extremely efficient for iterating through arrays (e.g., processing 
elements sequentially), implementing loops that traverse data, and especially 
for managing stacks, as the register (often the Stack Pointer) naturally moves 
to the next or previous element during PUSH and POP operations. 

 
2.4 Assembly Language Programming 
While machine instructions are the only language a CPU directly understands, writing 
programs directly in binary machine code is extraordinarily tedious, error-prone, and virtually 
impossible for anything beyond the most trivial tasks. Assembly language provides a more 
human-friendly, symbolic abstraction over machine code. 



Introduction to Assembly Language: Symbolic Representation of Machine 
Instructions 

Assembly language is a low-level programming language that maintains a direct, one-to-one 
(or nearly one-to-one) correspondence with the underlying machine instructions of a specific 
CPU architecture. Instead of dealing with sequences of binary 0s and 1s, assembly 
language uses: 

● Mnemonics: Short, easy-to-remember symbolic codes (abbreviations) for machine 
opcodes. For example, ADD for addition, MOV for data movement, JMP for an 
unconditional jump, BEQ for "Branch if Equal to Zero." These mnemonics make the 
code much more readable than raw binary. 

● Symbolic Operands: Instead of using raw binary addresses for registers or memory 
locations, assembly language allows the use of symbolic names. For example, R0, 
R1 for registers; MY_DATA, LOOP_START for memory labels. 

● Literals/Constants: Numerical values can be written in decimal, hexadecimal 
(0x100), or binary, rather than converting them to binary manually. 

An assembly language instruction like ADD R1, R2, R3 is a textual representation that, for a 
specific processor, will translate directly into a single, unique binary machine instruction. This 
direct mapping makes assembly language a precise way to control hardware at its lowest 
level. 

Assembler Directives: Instructions to the Assembler 

Beyond instructions that translate directly to machine code, assembly language programs 
also contain assembler directives (also commonly called pseudo-operations or 
pseudo-ops). These are not machine instructions that the CPU executes; rather, they are 
commands or instructions to the assembler program itself. Assembler directives control 
various aspects of the assembly process, such as data definition, memory allocation, 
program organization, and even conditional assembly. They influence how the assembler 
generates the object code. 

Common assembler directives include: 

● ORG (Origin): Specifies the starting memory address where the subsequent code or 
data segment should be placed by the assembler. This is crucial for controlling 
memory layout, especially in embedded systems where specific code must reside at 
precise addresses (e.g., reset vector). 

○ Example: ORG 0x1000 (Directs the assembler to place the following 
assembled code or data starting at memory address 0x1000). 

● EQU (Equate): Assigns a symbolic name (a label) to a constant numerical value or 
another symbol. This is a compile-time substitution; the symbol itself does not occupy 
memory. 

○ Example: BUFFER_SIZE EQU 256 (Wherever BUFFER_SIZE is used in the 
assembly code, the assembler will replace it with the value 256). 

● Data Definition Directives (DB, DW, DD, etc.): These directives are used to 
allocate memory space and, optionally, initialize it with specific data values. The suffix 
indicates the size of each data item. 



○ DB (Define Byte): Allocates and initializes bytes. 
■ Example: MESSAGE DB 'Hello', 0 (Allocates 6 bytes, storing ASCII 

values for 'H', 'e', 'l', 'l', 'o', and a null terminator). 
○ DW (Define Word): Allocates and initializes words (typically 16-bit). 

■ Example: LOOKUP_TABLE DW 10, 20, 30 (Allocates three words, 
initializing them with 10, 20, and 30). 

○ DD (Define Double Word): Allocates and initializes double words (typically 
32-bit). 

● Memory Reservation Directives (RESB, RESW, RESD, etc.): These directives 
reserve blocks of uninitialized memory space. They specify the number of units 
(bytes, words, etc.) to reserve. 

○ RESB (Reserve Byte): Reserves a specified number of bytes. 
■ Example: MY_BUFFER RESB 128 (Reserves 128 uninitialized bytes 

for MY_BUFFER). 
● END: This directive signifies the end of the assembly language source file. Any text 

after this directive is ignored by the assembler. 

Assembly Process: From Source Code to Object Code 

The conversion of an assembly language program into an executable machine code file is 
performed by a program called an assembler. The process typically involves multiple steps: 

1. Assembly Source Code Creation: The programmer writes the assembly program 
using a text editor, saving it as a source file (e.g., my_program.s or 
my_program.asm). 

2. Assembler Pass 1 (Symbol Table Generation): The assembler first reads through 
the entire source file. Its primary goal in this pass is to identify all symbolic labels 
(e.g., LOOP_START, DATA_AREA, my_function) defined by the programmer and 
determine the memory address corresponding to each label. It constructs a symbol 
table, which is a mapping of symbolic names to their calculated addresses. This 
pass also processes directives like ORG and EQU that affect address calculations. 

3. Assembler Pass 2 (Code Generation): In the second pass, the assembler reads 
the source file again. This time, it uses the symbol table (created in Pass 1) to 
translate each assembly language instruction into its equivalent binary machine 
code. It also processes data definition directives (DB, DW) to place literal values into 
memory and reserves space for uninitialized data (RESB, RESW). 

4. Object Code Generation: The output of the assembler is an object file (e.g., 
my_program.o or my_program.obj). This file contains: 

○ The generated machine code for the program. 
○ Information about where the code and data should be loaded in memory 

(relocation information). 
○ A list of symbols defined within this object file that might be referenced by 

other modules (public symbols). 
○ A list of symbols used in this object file that are defined elsewhere (external 

references). 
5. Linking (for Multi-Module Programs): If a larger program is divided into multiple 

assembly source files (or mixes assembly with C/C++), each file is assembled 
separately into its own object file. A program called a linker is then used to combine 



these multiple object files into a single, cohesive executable file. The linker's main 
tasks are: 

○ Resolving External References: It finds definitions for all symbols that were 
declared as external references in one object file but defined in another. 

○ Relocation: It adjusts addresses within the object code if the modules are not 
loaded at their initially assumed locations. 

○ Library Inclusion: It links in necessary routines from system libraries (e.g., 
I/O functions). 

○ Memory Layout: It determines the final memory layout of the entire program 
(code, data, stack, heap segments). 

6. Executable File: The final output of the linking process is the executable file (e.g., 
a.out on Linux, .exe on Windows, or a .bin for embedded systems). This file contains 
the complete machine code and data, ready to be loaded into memory and executed 
by the CPU. 

Macros: Abstraction in Assembly Programming 

A macro in assembly language is a powerful feature that allows a programmer to define a 
sequence of assembly instructions and give that sequence a single, symbolic name. 
Whenever that macro name is invoked within the assembly program, the assembler 
performs macro expansion, which means it replaces the macro name with its entire defined 
sequence of instructions. 

● Purpose and Benefits: 
○ Abstraction: Macros provide a limited form of abstraction, allowing complex 

or frequently repeated instruction sequences to be treated as a single 
conceptual unit. 

○ Code Reusability: Avoids repetitive coding of the same instruction patterns. 
○ Readability: Can make assembly code more readable by giving meaningful 

names to common operations. 
○ Parameterization: Macros can often accept parameters, allowing the 

expanded code to be customized for different uses each time it's invoked. 
○ No Runtime Overhead: Since macros are expanded during assembly 

(compile-time), there is no overhead at runtime associated with calling or 
returning from a macro. The CPU executes the expanded instructions directly. 

● Key Distinction from Subroutines: 
○ Subroutines are called using CALL/RETURN instructions, which involve 

saving/restoring context on the stack. The same single copy of the subroutine 
code is executed each time it's called. 

○ Macros are expanded in-line. The assembler literally copies and pastes the 
macro's code at every point of invocation. This results in the macro's code 
being physically duplicated throughout the final executable. 

● Example: 
● Code snippet 

; Macro Definition 



.MACRO SWAP_REG R_A, R_B 

    MOV R_TEMP, \R_A   ; Assume R_TEMP is a temporary register 

    MOV \R_A, \R_B 

    MOV \R_B, R_TEMP 

.ENDM 

 

; Macro Invocation 

SWAP_REG R1, R2     ; Expands to: MOV R_TEMP, R1; MOV R1, R2; MOV R2, R_TEMP 

... 

SWAP_REG R3, R4     ; Expands to: MOV R_TEMP, R3; MOV R3, R4; MOV R4, R_TEMP 

●  
●  
● Disadvantages of Macros: 

○ Code Size Increase: Due to in-line expansion, programs using macros 
extensively can become significantly larger than those using subroutines. 

○ Debugging Challenges: Debugging tools often show the expanded code, 
which can be less intuitive to follow than the original macro definition. 

Advantages and Disadvantages of Assembly Language 

Choosing to program in assembly language involves a careful trade-off between power and 
productivity. 

Advantages: 

● Direct Hardware Control and Access: This is the primary strength. Assembly 
language provides the most granular level of control over the CPU's registers, 
memory, and specific hardware peripherals. This is indispensable for tasks requiring 
precise timing, direct manipulation of hardware registers (e.g., in device drivers), or 
interacting with specialized hardware features not exposed by high-level languages. 

● Extreme Performance Optimization: For highly performance-critical code sections, 
assembly language allows programmers to write hand-optimized routines that can be 
faster or more efficient than what a compiler might generate. This involves leveraging 
specific CPU pipeline characteristics, cache behavior, and specialized instructions 
(e.g., SIMD instructions). 

● Memory Efficiency/Code Size Reduction: By having direct control over instruction 
selection and operand placement, assembly programmers can often write incredibly 
compact code. This is vital for deeply embedded systems with very limited memory 
(e.g., microcontrollers with only a few kilobytes of flash memory). 



● Understanding CPU Architecture: Programming in assembly language forces a 
deep, intimate understanding of the target processor's internal architecture, its 
instruction set, memory organization, and how data moves through the system. This 
knowledge is invaluable for debugging complex system issues, even when working in 
high-level languages. 

● Bootloaders and Operating System Kernels: The initial code that runs when a 
computer powers on (the bootloader) and the core parts of an operating system 
kernel often contain assembly language for setting up the basic hardware, switching 
CPU modes, and handling interrupts. 

● Reverse Engineering and Security Analysis: Knowledge of assembly language is 
crucial for analyzing existing binary programs (e.g., for security vulnerabilities, 
malware analysis) or reverse engineering undocumented systems, as it allows direct 
inspection of executable code. 

Disadvantages: 

● Machine Dependent (Lack of Portability): This is the most significant drawback. 
Assembly language is specific to a particular Instruction Set Architecture (ISA). Code 
written for an ARM Cortex-M processor will not run on an x86 processor or a different 
ARM architecture (e.g., ARM Cortex-A) without substantial rewriting. This makes 
porting software to different hardware platforms extremely challenging. 

● High Development Time and Cost: Writing even moderately complex applications 
in assembly language is incredibly time-consuming and labor-intensive compared to 
using high-level languages. Every detail must be meticulously managed manually. 

● Difficult to Debug: Debugging assembly code can be extremely challenging. There 
are no high-level concepts to abstract away hardware details, meaning programmers 
must constantly track register values, memory contents, and flag states. Bugs can be 
subtle and difficult to trace. 

● Poor Readability and Maintainability: Assembly code is inherently less readable 
than high-level code. Its low-level nature means it's often difficult for someone other 
than the original author (or even the original author after some time) to understand 
and modify the code. This significantly increases long-term maintenance costs. 

● Error Prone: The manual management of all CPU resources, memory addresses, 
and status flags makes assembly programming highly susceptible to logical errors, 
typos, and subtle timing bugs. 

● Lack of High-Level Abstractions: Assembly language does not directly support 
powerful high-level programming constructs like complex data structures (e.g., linked 
lists, trees), object-oriented programming, or built-in exception handling. These must 
be implemented manually using basic instructions, further increasing complexity. 

Due to these overwhelming disadvantages, assembly language is rarely used for writing 
entire applications in modern software development. However, it remains indispensable for 
specific, critical components in embedded systems, such as: 

● Initial system boot-up code. 
● Hardware-specific device drivers. 
● Highly optimized critical routines (e.g., digital signal processing algorithms, 

cryptographic primitives). 



● Real-time interrupt service routines where latency is paramount. 
In these cases, assembly language is often integrated as small, optimized modules 
within a larger program written in a high-level language like C or C++. 

 
2.5 Program Control: Stacks, Queues, and Subroutines 
Effective and structured program control relies on well-defined data structures for temporary 
storage and robust mechanisms for managing reusable code blocks. This section explores 
two fundamental data structures, stacks and queues, and the crucial concept of subroutines, 
which are essential for modular and efficient software design. 

Stacks 

A stack is a fundamental linear data structure that strictly adheres to the Last-In, First-Out 
(LIFO) principle. This principle dictates that the last item added to the stack is always the 
first one to be removed. Conceptually, it's like a stack of plates: you always add a new plate 
to the top, and you always remove a plate from the top. In computer architecture, a stack is 
typically implemented as a dedicated region of contiguous memory locations. 

● LIFO (Last-In, First-Out) Principle: 
○ PUSH Operation: This operation adds a new data item to the "top" of the 

stack. When an item is PUSHed, the stack grows (either towards lower or 
higher memory addresses, depending on the architecture's convention). 

○ POP Operation: This operation removes the most recently added item from 
the "top" of the stack. When an item is POPped, the stack shrinks. 

● Stack Pointer (SP): Register Tracking the Top of the Stack: 
The Stack Pointer (SP) is a special-purpose CPU register that is dedicated to always 
holding the memory address of the current "top" of the stack. It's the CPU's direct 
way of knowing where the next PUSH should place data or where the next POP 
should retrieve data from. 

○ Stack Growth Convention: Stacks can grow in two directions: 
■ Downward (most common): When an item is PUSHed, the SP is 

decremented first, and then the item is stored at the new (lower) 
address pointed to by SP. When an item is POPped, the item is read 
from the SP's address, and then the SP is incremented. 

■ Upward: When an item is PUSHed, the item is stored at the address 
pointed to by SP, and then the SP is incremented. When an item is 
POPped, the SP is decremented first, and then the item is read from 
the new (lower) address. 

● PUSH and POP Operations: 
These operations are typically implemented as single, dedicated machine 
instructions in most modern instruction sets, making stack manipulation very efficient. 

○ PUSH Rx: This instruction usually first adjusts the Stack Pointer (e.g., 
decrements it by the size of a word if the stack grows downwards) and then 
stores the content of general-purpose register Rx into the memory location 
pointed to by the new Stack Pointer. 



○ POP Rx: This instruction usually first loads the content from the memory 
location pointed to by the Stack Pointer into general-purpose register Rx and 
then adjusts the Stack Pointer (e.g., increments it by the size of a word). 

● Critical Uses of Stacks in Embedded Systems and General Programming: 
The stack is an extremely versatile and pervasive data structure, fundamentally 
supporting many core programming constructs managed implicitly by compilers and 
explicitly by assembly programmers: 

○ Temporary Data Storage: Stacks provide a convenient and efficient way to 
temporarily save the values of CPU registers or other crucial data that needs 
to be preserved during a specific operation (e.g., before calling a subroutine 
or handling an interrupt) and then restored afterward. 

○ Parameter Passing to Subroutines (Functions): Arguments (parameters) 
required by a subroutine can be PUSHed onto the stack by the calling routine 
before the CALL instruction. The called subroutine then accesses these 
parameters from the stack. This provides a flexible mechanism for passing 
multiple parameters. 

○ Local Variable Allocation: When a subroutine (function) is entered, space 
for its local (non-static) variables is dynamically allocated on the stack. This 
space is automatically deallocated (or "popped") when the subroutine returns, 
ensuring efficient memory reuse. 

○ Managing Return Addresses for Subroutines: This is arguably the most 
critical role of the stack. When a CALL instruction is executed, the CPU 
automatically PUSHes the memory address of the instruction immediately 
following the CALL onto the stack. This is the return address. When the 
subroutine finishes its execution, the RETURN instruction automatically POPs 
this return address from the stack and loads it back into the Program Counter 
(PC), thereby ensuring that program execution correctly resumes at the point 
where the subroutine was called. 

○ Interrupt Handling: Similar to subroutines, when a hardware or software 
interrupt occurs, the CPU's current state (including the Program Counter, 
contents of key status registers, and often some general-purpose registers) is 
automatically PUSHed onto the stack. This "context saving" ensures that the 
interrupted program can be fully restored and continue execution seamlessly 
after the Interrupt Service Routine (ISR) completes. 

Queues 

A queue is a linear data structure that strictly follows the First-In, First-Out (FIFO) principle. 
This principle states that the first item added to the queue is always the first one to be 
removed. Think of a real-world queue, like people waiting in line at a counter: the person 
who arrived first is served first. In computer systems, queues are typically implemented 
using a circular buffer in memory, managed by a "head" pointer (for dequeueing) and a "tail" 
pointer (for enqueueing). 

● FIFO (First-In, First-Out) Principle: 
○ ENQUEUE Operation (or ENQ/Add): This operation adds a new data item to 

the "rear" (or "tail") of the queue. 



○ DEQUEUE Operation (or DEQ/Remove): This operation removes the oldest 
data item from the "front" (or "head") of the queue. 

● Primary Uses of Queues in Embedded Systems: 
Queues are exceptionally useful for managing asynchronous data flows and for 
inter-process or inter-task communication, particularly in real-time and event-driven 
systems. 

○ Buffering Data in I/O Operations: 
■ Producer-Consumer Decoupling: I/O devices often produce or 

consume data at different rates or at times unpredictable to the CPU. 
A queue acts as a buffer, decoupling the "producer" (e.g., a UART 
receiver putting received bytes into a queue) from the "consumer" 
(e.g., the CPU processing those bytes). This allows data to be 
temporarily stored until the consumer is ready, preventing data loss. 

■ Example (UART): Incoming serial data bytes are placed into a 
receive queue by an interrupt service routine (ISR) as they arrive. The 
main application task can then DEQUEUE bytes from this queue at its 
own pace for processing. Similarly, data to be transmitted can be 
ENQUEUED, and a transmit ISR can DEQUEUE and send them to 
the UART. 

○ Inter-Task Communication and Scheduling (in RTOS): 
■ In multi-tasking embedded systems (especially those using a 

Real-Time Operating System - RTOS), tasks often need to 
communicate and exchange data. Message queues are a common 
RTOS primitive for this purpose. One task can ENQUEUE a message 
into a queue, and another task can DEQUEUE it. 

■ Event Handling: Events (e.g., button presses, sensor readings 
exceeding thresholds, network packet arrivals) can be placed in an 
event queue by ISRs or other tasks. A dedicated "event handler" task 
can then DEQUEUE and process these events sequentially, ensuring 
ordered processing and preventing event overload. 

■ Task Scheduling: In some scheduling algorithms, tasks waiting for a 
resource or an event might be placed into a queue. 

Subroutines (Functions/Procedures) 

Subroutines (universally known as functions in C/C++ and procedures in some other 
languages) are named, self-contained blocks of code designed to perform a specific, 
well-defined task. They are a cornerstone of structured programming, enabling modularity, 
code reuse, and easier program management. 

● Concept: Reusable Blocks of Code: 
○ Instead of writing the same sequence of instructions repeatedly wherever that 

task is needed in a program, the instructions are encapsulated within a single 
subroutine. This block is then invoked (or "called") from various parts of the 
main program or from other subroutines. 



○ Benefits: Reduces code duplication (leading to smaller program size), 
improves program readability, makes programs easier to debug (a bug needs 
to be fixed only once in the subroutine), and enhances maintainability. 

● Call and Return Mechanism: Saving/Restoring Context on the Stack: 
The process of transferring control to a subroutine and then returning to the calling 
routine requires careful management of the CPU's state. This mechanism 
fundamentally relies on the stack. 

○ CALL Instruction (or JSR - Jump to SubRoutine): 
■ When a CALL instruction is executed, the CPU's hardware or firmware 

automatically saves the memory address of the instruction 
immediately following the CALL onto the stack. This saved address is 
known as the return address. It's the critical piece of information that 
tells the CPU where to resume execution in the calling routine once 
the subroutine completes. 

■ After pushing the return address, the Program Counter (PC) is loaded 
with the starting memory address of the subroutine (its entry point). 
This transfer of control causes the CPU to begin executing the 
instructions within the subroutine. 

○ Subroutine Execution: Once control is transferred, the subroutine's code 
executes its sequence of operations. This might involve using CPU registers 
for calculations, accessing memory, performing I/O, or even calling other 
subroutines (leading to nested calls). 

○ RETURN Instruction (or RET): 
■ When the subroutine has completed its task, it executes a RETURN 

instruction. This instruction causes the CPU to retrieve (POP) the 
return address that was previously saved on the stack by the 
corresponding CALL. 

■ The retrieved return address is then loaded back into the Program 
Counter (PC). 

■ Program execution immediately resumes at the instruction in the 
calling routine that followed the original CALL. 

○ Saving and Restoring Registers (Caller-Save vs. Callee-Save): 
Subroutines often need to use some of the CPU's general-purpose registers 
to perform their computations. If these registers are already in use by the 
calling routine, their values must be preserved. There are two common 
conventions: 

■ Caller-Save: The calling routine is responsible for saving (PUSHing 
onto the stack) any registers it needs to preserve before making the 
CALL, and restoring them (POPping from the stack) after the CALL 
returns. 

■ Callee-Save: The subroutine being called is responsible for saving 
(PUSHing onto the stack) any registers it intends to use (and modify) 
at the beginning of its execution (its "prologue"), and restoring them 
(POPping from the stack) before it executes its RETURN instruction 
(its "epilogue"). 
Most architectures and programming conventions use a combination 
of both for different sets of registers to optimize performance. 



● Parameter Passing: 
Subroutines typically need to receive input data (parameters or arguments) from the 
calling routine and may produce output data (return values). Common methods for 
passing parameters include: 

○ Using Registers: For a small number of parameters, the calling routine can 
place them into specific CPU general-purpose registers before executing the 
CALL instruction. This is generally the fastest method because it avoids 
memory access. 

○ Using the Stack: Parameters are PUSHed onto the stack by the calling 
routine before the CALL. The called subroutine then accesses these 
parameters by calculating their offsets relative to the Stack Pointer (SP) or a 
dedicated Frame Pointer (FP). This method is flexible for passing many 
parameters. Return values can also be PUSHed onto the stack or left in a 
designated register. 

○ Using Memory Locations: Parameters can be stored in agreed-upon fixed 
memory locations that are known to both the caller and the callee. 
Alternatively, a pointer to a data structure containing multiple parameters can 
be passed (often in a register or on the stack). 

● Nested Subroutines: 
A crucial feature enabled by the stack is nested subroutines, where one subroutine 
calls another subroutine. The LIFO nature of the stack perfectly handles the return 
addresses in such scenarios: 

○ The main program CALLs SubroutineA. The return address from the main 
program (RA_Main) is PUSHed onto the stack. 

○ SubroutineA begins execution. 
○ During SubroutineA's execution, it CALLs SubroutineB. The return address 

from SubroutineA (RA_A) is PUSHed onto the stack (now on top of 
RA_Main). 

○ SubroutineB begins execution. 
○ When SubroutineB completes, it executes a RETURN instruction. RA_A is 

POPped from the stack and loaded into the PC, returning control to 
SubroutineA. 

○ SubroutineA continues execution from RA_A. 
○ When SubroutineA completes, it executes its RETURN instruction. RA_Main 

is POPped from the stack and loaded into the PC, returning control to the 
main program. 
This sequential PUSHing and POPping of return addresses ensures that each 
subroutine correctly returns to its direct caller, regardless of the depth of 
nesting. 

● Stack Frames (Activation Records): 
For each invocation of a subroutine (i.e., for each time a CALL instruction is 
executed), a dedicated area on the stack is allocated, known as a stack frame or 
activation record. This stack frame contains all the information relevant to that 
particular subroutine call. When a subroutine is called, a new stack frame is created; 
when it returns, its stack frame is effectively "popped" from the stack, and the 
memory it occupied is automatically reclaimed for subsequent calls. 
A typical stack frame for a subroutine invocation might contain: 

○ The return address (pushed by the CALL instruction). 



○ Saved Register Values: Copies of any CPU registers that the subroutine 
modifies and needs to restore to their original values for the calling routine. 

○ Passed Parameters: Arguments that were PUSHed onto the stack by the 
calling routine. 

○ Local Variables: Space for any non-static local variables declared within the 
subroutine. 

● Often, a special-purpose register called the Frame Pointer (FP) or Base Pointer 
(BP) is used to point to a fixed location within the current stack frame. This provides 
a stable reference point for accessing parameters (at positive offsets from FP) and 
local variables (at negative offsets from FP), even as the Stack Pointer (SP) might 
move during the subroutine's execution (e.g., for temporary PUSH/POP operations or 
for allocating dynamic arrays on the stack). The Frame Pointer is especially useful 
when the size of local variables or the number of pushed parameters varies, as SP's 
value changes, but FP provides a consistent base. When a subroutine is entered, the 
previous FP value is saved on the stack (as part of the new stack frame), and the 
current SP becomes the new FP. When the subroutine returns, the old FP is restored, 
effectively restoring the stack frame of the caller. This structured use of the stack 
enables robust and efficient management of nested subroutine calls and their 
associated data. 
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